I B.Tech I Semester Regular Examinations, May -2022 LINEAR ALZEBRA \& DIFFERENTIAL EQUATIONS
(Com. to All Branches)

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks
 UNIT -I

A) Define the rank of a matrix. Reduce to Echelon form and hence find the rank
of the matrix $\left[\begin{array}{cccc}2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1\end{array}\right]$.
B) Discuss for what values of λ, μ the system of linear equations 7 M $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have
(i) no solution (ii) a Unique solution (iii) an infinite number of solutions.

OR
A) Solve the system of homogeneous linear equations by Gauss' elimination 7M method:
$x+y-z=0, \quad x-2 y+z=0, \quad 3 x+6 y-5 z=0$.
B) Determine the currents in following Electrical circuit using Gauss'

Elimination method.

UNIT -II
A) Find the Eigen values and Eigen vectors of the following matrix 7 M $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$
B) i) Prove that the product of the Eigen values of a matrix is equal to its 7 M determinant.
ii) Prove that if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the Eigen values of a matrix A then,
$\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}},-----, \frac{1}{\lambda_{n}}$ are the Eigen values of A^{-1}.
A)

Show that the matrix $A=\left[\begin{array}{rrr}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ satisfies its own characteristic equation
B) Reduce the quadratic form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ to canonical form by an orthogonal transformation.

UNIT -III

A) Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
B) Find the orthogonal trajectories of the curve $r=a(1-\cos \theta)$ where ' a ' is a parameter

OR

A) \quad Solve $\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$
B) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1 \frac{1}{2}$ hours?

UNIT -IV

A) Find the general solution of $\left(D^{2}-6 D+9\right) y=6 e^{3 x}+7 e^{-2 x}-\log 2$ 7M
B) Find Particular integral of $(D-2)^{2}=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$

OR

A) Solve the D.E $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$
B) Find the current in the LCR circuit by a constant emf, and the response of the circuit is given by $\frac{d^{2} i}{d t^{2}}+4 \frac{d i}{d t}+4 i=0, i(0)=2$ and $\frac{d i}{d t}=4$ att $=0$

UNIT -V

A) Show that $J J^{\prime}=1$, where $J=J\left(\frac{x, y}{u, v}\right)$ and $J^{\prime}=J\left(\frac{u, v}{x, y}\right)$ given $x=e^{u} \cos v, y=e^{u} \sin v$
B) The temperature T at any point (x, y, z) in space is $T=400 x y z^{2}$. Using Lagrange's method, find the highest temperature on the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$.

OR

A) Show that u, v are functionally related and hence find the relationship between them if $u=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} \& v=\sin ^{-1}(x)+\sin ^{-1}(y)$.
B) Verify Euler's theorem for the function $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$

