

I B.Tech- I Semester Supply Examinations, October -2022 APPLIED PHYSICS

(Com. to ECE Branch Only)

Time : 3 Hours			Max.Marks:70	
		Answer any five Questions one Question from Each Unit		
		All Questions Carry Equal Marks		
1	۸١	UINIT -I With a ray diagram, explain the theory of thin film interference by reflection	714	
T	R)	A soan film of refractive index u is 1.33 and thickness $5000\Lambda^0$ is exposed to white	7171	
	D)	light having the radius of curvature is 10 cm. What wavelength in visible region is	7 101	
		reflected?		
		OR		
2	A)	Explain the construction and working of Nicol's prism.	7M	
	B)	Derive the expression for thickness of quarter and half wave plates.	7M	
		UNIT -II		
3	A)	Distinguish between spontaneous emission and stimulated emission.	7M	
	B)	Develop the relation between the probability of spontaneous emission and	7M	
		probability stimulated emission in terms of Einstein Coefficients.		
		OR		
4	A)	Obtain the mathematical expression for acceptance angle for an optical fiber.	7M	
	B)	Classify the optical fibers based on their refractive index profile.	7M	
5		UNIT -III		
	A)	Explain the origin of magnetic moment at the atomic level.	7M	
	B)	Distinguish the properties of Dia, Para and Ferro magnetic materials.	7M	
6	• >	OR Define the falls, the target of distant day	CN 4	
	A)	Define the following terms in dielectrics.	6IVI	
	D)	I) Electric dipole moment II) Polarizability III) Dielectric constant	454	
	р) С)	Calculate the electric suscentibility for a gas whose dielectric constant is 1 000057	41VI ////	
	C)	LINIT IN	4101	
7	۵)	State and explain the Heisenberg's Uncertainty principle	71/	
,	R)	Derive the Schrodinger time independent wave equation	7M	
	5)	OR	,	
8	A)	Explain the assumptions of quantum free electron theory to overcome the	7M	
	,	drawbacks in classical free electron theory.		
	B)	Derive the expression for electrical conductivity based on quantum free electron	7M	
		theory.		
		UNIT -V		
9	A)	Derive the expression for effective mass of an electron.	7M	
	B)	How can you classify materials into conductors, semiconductors and insulators	7M	
		based on band theory?		
		OR		
10	A)	Describe drift and diffusion currents in a semiconductor.	7M	
	B)	Explain Hall effect and derive an expression for Hall coefficient.	7M	